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NONBOUSSINESQ THERMAL CONVECTION

IN MICROGRAVITY UNDER NONUNIFORM HEATING

UDC 532.529.2:536.412:532.5.013.13Yu. A. Gaponenko1 and V. E. Zakhvataev2

The model of subsonic flows is used to numerically the effect of thermal expansion of a fluid on the
formation of naturally convective flows for small Rayleigh numbers (microconvection) and spatially
periodic distribution of heat flows on the boundaries of the domain occupied by the fluid.

Introduction. Under low gravity, the formation of free convection can be strongly affected by small
changes in the thermal properties of the medium, which are insignificant under ground conditions. In particular,
theoretically, volume expansion can cause some convective phenomena observed in experiments performed aboard
spacecraft [1, 2].

Estimates of the orders of magnitudes in the complete Navier–Stokes and heat-transfer equations and nu-
merical studies show that if the Rayleigh number R is small enough [3, 4], i.e.,

R/ε ≡ gH3/(νχ) 6 O(1), (1)

the contribution of the density changes due to thermal expansion of the medium to the formation of the velocity
field is comparable to or exceeds the contribution of buoyancy forces. In this case, the Oberbeck–Boussinesq
approximation is inapplicable for description of thermal convection. In (1), ε = β∆T is the Boussinesq parameter
(∆T is the typical temperature difference and β is the temperature coefficient of volume expansion), H is the
characteristic linear dimension, g is the acceleration of the external force field, ν is the kinematic viscosity, and
χ is the thermal diffusivity of the medium at a certain characteristic temperature. Conditions (1) hold under
microacceleration achievable aboard modern spacecraft. The convective flows formed under conditions (1) and
usually characterized by velocities of about 10 µm/sec and lower are called microconvection [4].

Microconvection can be described using the well-known model of substantially subsonic flows with arbitrary
density changes, which is obtained from the complete system of Navier–Stokes and heat-transfer equations in the
limit as the Mach number and hydrostatic compressibility tend to zero [5, 6].

In previous studies of microconvection [3, 4, 7–12], the basic model was the model of microconvection, which
is essentially a particular case of the subsonic flow approximation. Emphasis was given to investigating the effect of
external actions changing rapidly in time because they can cause a marked changes in the density of the medium.
The creation of rapidly changing heating conditions underlay some experiments on detection and investigation of
microconvection phenomena.

For experimental investigation of microconvection, it is proposed to use spatially nonuniform heating, which
allows the structure and characteristics of convective flows to be easily controlled by means of thermal expansion
of the medium. In the present study, we consider the effect of spatially periodic heating on the formation of
microconvection in a rectangle. The dependence of the structure and properties of microconvective flows of this
type on the physical and geometrical constitutive parameters is studied numerically.
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Formulation of the Problem. We consider two-dimensional microconvective fluid flows with isobaric
volume-expansion coefficient β, viscosity µ, thermal conductivity k, and specific heat at constant pressure cP
(volumetric viscosity is set equal to zero); it is assumed that the above-mentioned thermal properties are constant.
The fluid occupies a rectangular domain 0 6 x 6 L, 0 6 y 6 H bounded by solid impermeable walls (x and y are
Cartesian axes). The system is in a constant homogeneous external force field, and the direction of the vector g of
acceleration of the external mass forces coincides with the x axis. The state of the system is described by following
fields: the field of density ρ(x, t) at the time t at the point x = (x, y), the velocity field v(x, t) = (v1, v2), the
pressure p(x, t), and the deviation of the temperature θ from the characteristic value θ0 — T (x, t) = θ − θ0.

Initially, all walls, except for y = 0, are heat insulated. Beginning at a certain time, a heat flow which
changes periodically in time and space is specified on the boundary of the domain y = 0:

Ty = Θ cos (ωt) cos (nxπ/L). (2)

Here ω is the frequency of fluctuations of the heat flow and n is the number of fluctuation half-periods of the heat
flow. The heat-insulation conditions or condition (2) is specified on the boundary y = H. The walls x = 0 and
x = L remain heat insulated.

The flows considered are described using the model of subsonic flows. We note that in the subsonic flow ap-
proximation, the total pressure is written as the sum of the spatially homogeneous thermodynamic component P (t)
and the component p(x, t) that takes into account the dynamic and hydrostatic effects; the latter is eliminated from
the equation of state, which ensures “filtration” of the acoustics. In the case considered, by virtue of the boundary
conditions (the total conductive heat flow through the boundary of the domain is equal to zero) P = const, and the
equations of the subsonic flow model become

−1
ρ

dρ

dt
= ∇ · v, ρ

dv

dt
= −∇p+

µ

3
∇(∇ · v) + µ∇2v + ρg, ρcP

dT

dt
= k∇2T. (3)

As the equation of state, we use the linear dependence of the specific volume on temperature [3, 4]

ρ = ρ0(1 + βT )−1, (4)

where ρ0 > 0 is the characteristic (constant) density.
Combining the continuity and heat equations and the equation of state, we obtain

∇ · v = βχ∇2T, (5)

where χ = k/(ρ0cP ) is the thermal diffusivity.
System (3)–(5) corresponds to the microconvection model [3, 4] in the physical variable obtained from the

equations of linear nonequilibrium thermodynamics by a priori assumptions in [3].
The scales for the distance, velocities, time, modified pressure, and temperature are H, εχ/H, H2/χ,

ρ0(ενχ/H)2, and ΘH = ∆T , respectively. Then, in the dimensionless variables, system (3)–(5) take the following
form: (0 6 x 6 A and 0 6 y 6 1):

∇ · v = ε∇2T,

Pr−1
(∂v
∂t

+ εv · ∇v
)

= GTk − (1 + εT )∇p+ (1 + εT )∇ · T , (6)

∂T

∂t
+ εv · ∇T = (1 + εT )∇2T.

Here G = |g|H3/(νχ) is the Galilei number, Pr = ν/χ is the Prandtl number, A = L/H is the aspect ratio, T is
the Cartesian tensor with the components Tik = ∂vi/∂xk + ∂vk/∂xi − (2/3)δik∇ · v, and k = g/|g|.

Two versions of boundary conditions for temperature are used. The boundary conditions are as follows: for
one-sided heating,

x = 0, x = A: Tx = 0; (7)

y = 1: Ty = 0, y = 0: Ty = cos (ωt) cos (πnx/A); (8)

and for two-sided heating, relation (7) and

y = 0, 1: Ty = cos (ωt) cos (πnx/A). (9)
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TABLE 1

Fluid No. χ, cm2/sec β, K−1 Pr

1 0.001518 0.0002 5.4
2 0.001098 0.0010 838.0
3 0.001120 0.0010 1625.0
4 0.490000 7.5 · 10−6 0.0054

For the velocity on the boundary of the calculation domain, the attachment conditions are specified:

v = 0. (10)

The initial data correspond to the equilibrium state:

t = 0: v = 0, T = T0. (11)

The temperature field is determined by solving the heat-conductivity equation T0t = ∇2T0 subject to boundary
conditions (7)–(11).

The results of numerical solution of problem (6)–(11) are compared with the results of solution of a similar
problem in the Oberbeck–Boussinesq approximation. The corresponding equation and the boundary conditions for
the Oberbeck–Boussinesq model can be obtained by setting ε = 0 in the continuity equation in system (6)and in
the factor 1 + εT .

Equations (6) are solved by a finite-difference method designed using the well-known method [13] and one
of its modifications for compressible flows [5]. For transition from the nth to the (n+ 1)th time layer, the following
procedure is used.

1. The approximate value of the velocity vn+1
1 is determined by scalar marching along each of the x and y

directions:

vn+1
1 = vn + τ [−εvn · ∇vn+1

1 − (1 + εTn)Pr∇pn + (1 + εTn)∇ · T n+1
1 + GTngk].

2. The pressure p and refined velocity v are calculated by an iterative procedure (k is the iteration number):

pn+1
k = pn+1

k−1 − γ(∇vn+1
k − ε∇2Tn),

vn+1
k+1 = vn+1

k − τ(1 + εTn)Pr(∇pn+1
k −∇pn+1

k−1).

The iterations continue until the inequality |pn+1
k − pn+1

k−1 | < εp (εp is the specified calculation accuracy) is satisfied.
The initial pressure for the iterations is pn+1

0 = pn. The parameter γ, characterizing the rate of convergence of the
process, is set equal to

γ =
1

τPr(1 + εTn)

( 2
h2
x

+
2
h2
y

)−1

.

3. The temperature Tn+1 is determined from the energy equation by scalar marching:

Tn+1 = Tn − τεvn+1 · ∇Tn+1 + τ(1 + εTn)∇2Tn+1.

This computational algorithm is implemented using a grid composed of a main system of nodes (for p and
T ) and two auxiliary systems of nodes (for each of the velocity components) [5, 13]. The spatial derivatives are
approximated by central differences with second-order accuracy. The derivatives on the domain boundary are
calculated using “fictitious” cells outside the computational grid, in which the required quantities are calculated by
means of quadratic extrapolation.

The calculation accuracy was checked by the maximum balance of mass in a cell for the entire computation
domain

Em =
∫
ρ|ρ(t) dx dy −

∫
ρ|ρ(0) dx dy +

∫
ρv dS dt,

which was maintained within ±1%.
Results of Numerical Modeling and Discussion. The present calculations of convective flows are

performed for fluids whose parameters are given in Table 1. We consider model media such as water H2O (fluid
No. 1), PMS-100 (fluid No. 2) and PMS-200 (fluid No. 3) silicone oils at a temperature of 300 K [14], and a medium
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Fig. 1. Temperature versus time.

Fig. 2. Temperature isolines (a) and velocity fields for the Oberbeck–Boussinesq model (b) and the
microconvection model for t′ = t′1 (c), t′ = t′2 (d), and t′ = t′3 (e).

with a small Prandtl number, such as a molten metal or a semiconductor (No. 4). The space scale is H = 1 cm,
and the dimensionless angular frequency of fluctuations of the heat flow through the boundary ω′ = 1.

We study the mechanisms of formation of microconvective flows, the dependence of their structure and
properties on the constitutive parameters under nonstationary, spatially periodic distribution of heat flow on the
boundaries of the closed domain occupied by the fluid. A main parameter of the problem that determines the extent
to which the velocity field is affected by the buoyancy force and volume expansion is the Galilei number G = R/ε
(microconvection parameter [3, 4]).

Case of Absence of External Forces. The effect of thermal expansion of the fluid is most pronounced in
the absence of external force fields. In this case, the single external factor that can induce macroscopic motion is
the nonstationary nonuniform thermal action on the walls of the cavity, and the occurrence of convection is only
related to the thermal expansion of the fluid. The mechanism of development of microconvective flow is as follows.
Thermal expansion, taken into account by the right side of Eq. (5) βχ∇2T , induces flow as a necessary condition for
conservation of mas. In turn, the difference of the quantity ∇2T from zero is due to the nonstationary temperature
variations in time and the temperature and velocity field configurations for which v · ∇T is substantially different
from zero in some parts of the domain occupied by the fluid.

Influence of the Microconvection Parameter G on Microconvective Flow. In experiments aboard modern
spacecraft, the parameter G is substantially different from zero. Numerical calculations confirm that for rather
small G, according to (1), thermal expansion dominates. The calculations were performed for the following flow
parameters of fluid No. 4: G = 0.01, A = 2, n = 1, and ε = 7.5 · 10−4. Figure 1 shows a curve of the temperature
Ty

∣∣∣
x=0

versus time. Typical flow structures calculated for the Oberbeck–Boussinesq microconvection model are
presented in Fig. 2. Figure 2 shows the temperature isolines at the initial time, the velocity field with a two-vortex
symmetric structure typical of the Oberbeck–Boussinesq model, and the velocity field for the microconvection
model for various times. According to the results for the microconvection model given here, there are regimes
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TABLE 2

Model
Vmax, cm/sec

G = 0.01 G = 1

Microconvection 1.09 · 10−4 1.10 · 10−4

Oberbeck–Boussinesq 3.55 · 10−9 3.57 · 10−7

Fig. 3. Temperature isolines (a) and velocity field (b).

of unidirectional flow from the heated to the cooled domain induced by volume expansion (Fig. 2c and e). The
formation of such flows occurs at the moments when the temperature field varies in time most dynamically; only
when the time-dependent heat flow through the boundary is close to the extreme value, does a two-vortex flow
structure (Fig. 2d) form, for which the compressed fluid (by virtue of the continuity equation) flows out from the
domain of greater density (compare Fig. 2c–e).

The qualitative difference between the flow structures calculated by the microconvection and Oberbeck–
Boussinesq models is obvious: for the latter, the formation of a symmetric two-vortex structure (Fig. 2b) occurs
only under the action of the buoyancy force. In this case, as the temperature field varies with time, the centers of
the vortices are practically immobile but the direction of rotation changes. In addition, the maximum velocities
calculated for theses models differ considerably, especially for small values of G. The maximum velocities for fluid
No. 4 at A = 2, n = 1, and Θ = 100 K/cm are given in Table 2.

Effect of the Spatial Structure of the External Heat Flow on Microconvective Flow. The spatial inhomogeneity
of the external temperature field has a decisive effect on the microconvective flow structure. Let us consider the
effect of the number of fluctuation half-periods of the temperature gradient on the wall n on microconvection
characteristics. Figure 3 shows calculation results for flow of fluid No. 4 with number of fluctuation half-periods Ty
on the wall n = 5 at G = 0.01, A = 5, ε = 7.5 · 10−4. Usually, for rather large A, one fluctuation half-period
Ty generates one two-vortex cell in the fluid. Therefore, Fig. 3 shows five two-vortex structures, each of which is
induced by one half-period of heat flow fluctuations on the boundary. The calculations show that as n increases,
the flow rate decreases; for example, for fluid No. 4, Vmax = 6.05 ·10−4, 1.8 ·10−4, and 1.9 ·10−5 cm/sec at n = 1, 2,
and 5, respectively. (We note that the maximum temperature gradient in the domain decrease with increase in n.)

Two-Sided Heating. The effect of two-sided heating on the flow structure is shown in Fig. 4, which gives
calculation results for fluid No. 4 [subject to boundary conditions (7) and (9)] for n = 1, G = 0.01, A = 2,
and ε = 7.5 · 10−4. The variation in the temperature profile considerably changes the flow structure for the
microconvection model. As is evident from Fig. 4, a four-vortex structure is formed in the cavity. The most intense
vortices are observed at the heat-insulated walls, i.e., where the temperature field has the highest gradient. However,
this leads to a decrease in the maximum velocity: Vmax = 3.02 · 10−5 cm/sec, whereas for the one-vortex structure,
Vmax = 1.09 · 10−4 cm/sec. This is related to the smaller temperature gradient than that under one-sided heating.

Effect of the Aspect Ratio A on Microconvective Flow. Numerical calculations show that an increase in the
aspect ratio leads to an increase in maximum velocity; for example, for fluid No. 4, Vmax = 1.89 · 10−5, 1.09 · 10−4,
and 6.04 · 10−4 cm/sec for A = 1, 2, and 5 respectively. This effect is related to an increase in the specific power
of heating and the temperature gradient increasing with increase in A. In addition, as A increases, the formation
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Fig. 4. Temperature isolines (a) and velocity field (b) under two-sided heating.

TABLE 3

Fluid No.
Vmax, cm/sec

A = 1 A = 2

1 7.82 · 10−7 5.23 · 10−6

2 2.31 · 10−6 1.65 · 10−5

3 2.53 · 10−6 1.83 · 10−5

of the two-vortex structure for the microconvection model occurs at different times: the larger A, the later this
formation, compared to the moment when the heat flow on the boundary reaches the extreme value. This may
be due to the inertia of the fluid, which counteracts the thermal expansion with reversal of the direction of the
boundary heat flow.

The calculation results for fluids Nos. 1, 2, and 3 differ only quantitatively. The maximum velocities Vmax

for the given fluids at G = 0.01, n = 1, and Θ = 50 K/cm are given in Table 3.
Conclusions. The effect of the thermal expansion of fluids on the occurrence of convection at small

Rayleigh numbers, related to the spatial inhomogeneity of the thermal field on the boundaries of the reservoir,
is considered for typical substances and the geometrical configurations of physical systems employed in experiments
on convection under microgravity and space materials science. The numerical results obtained suggest that in
experiments with accelerations 105–106 times smaller than the acceleration due to terrestrial gravity achievable on
modern space vehicles, the contribution of the spatial inhomogeneity of the external thermal field to convection can
differ considerably from that obtained for the Boussinesq model.

At the same time, using spatial inhomogeneity of heating, it is possible to effectively study microconvective
phenomena in experiments. This approach supplements the approach based on the use of external actions changing
rapidly in time. The advantage of the proposed approach is that it makes it possible to form configurations
of physical systems such that they favor occurrence of stable, easily predicted qualitative changes in convection
regimes generated by the thermal expansion of the medium.
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